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THE STRUCTURE OF COMPACT RICCI-FLAT
RIEMANNIAN MANIFOLDS

ARTHUR E. FISCHER & JOSEPH A. WOLF

0. Introduction and preliminaries

An interesting problem in riemannian geometry is to determine the structure
of complete riemannian manifolds with Ricci tensor zero (Ricci-flat). In par-
ticular one asks whether such manifolds are flat. Here we show that any com-
pact connected Ricci-flat n-manifold M* has the expression

Mr = U\Tk x M»*,

where k is the first Betti number b,(M?), T* is a flat riemannian k-torus, M"~#
is a compact connected Ricci-flat (n — k)-manifold, and ¥ is a finite group of
fixed point free isometries of T% x M"~* of a certain sort (Theorem 4.1). This
extends Calabi’s result on the structure of compact euclidean space forms
([71; see [20, p. 125]) from flat manifolds to Ricci-flat manifolds. We use it to
essentially reduce the problem of the construction of all compact Ricci-flat
riemannian n-manifolds to the construction in dimensions < n and in dimen-
sion n to the case of manifolds with b, = O (see § 4). We also use it to prove
(Corollary 4.3) that any compact connected Ricci-flat manifold M has a finite
normal riemannian covering 7' X N — M where T is a flat riemannian torus,
dim T > b,(M), and N is a compact connected simply connected Ricci-flat
riemannian manifold. This extends one of the Bieberbach theorems [4], [20,
Theorem 3.3.1] from flat manifolds to Ricci-flat manifolds, and reduces the
question of whether compact Ricci-flat manifolds are flat to the simply con-
nected case. J. Cheeger and D. Gromoll have pointed out to us that this exten-
sion also follows from their proof of [8, Theorem 6]. Our direct proof how-
ever uses considerably less machinery than their deeper considerations of mani-
folds of nonnegative curvature.

As a consequence of these results, we can give a variety of sufficient topol-
ogical conditions for Ricci-flat riemannian n-manifolds M to be flat. For ex-
ample, if the homotopy groups z,(M) = O for ¥ > 1, or the universal covering
of M is acyclic (Theorem 4.6), or M has a finite topological covering by a
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space with b, > n — 3, then M is flat (Corollaries 4.3 and 4.4). In particular,
a given compact manifold which admits a flat riemannian structure satisfies
these conditions (see also Corollary 2.5). Thus a given compact manifold can-
not have both flat riemannian structures and nonflat Ricci-flat riemannian
structures. This remark is useful in studying some subsets of the space of
riemannian metrics on a given compact manifold ; see [9] and [10].

In §2 we give some results for riemannian manifolds with positive semi-
definite Ricci tensor. We apply these results in § 3 to show that if a compact
connected riemannian manifold M with positive semi-definite Ricci curvature
is homotopy-equivalent to a generalized nilmanifold, then M is flat (Theorem
3.1). In particular, if M is homotopy-equivalent to a euclidean space form,
then M is flat. This theorem sharpens a result of Wolf [19, Theorem 6.4] on
generalized nilmanifolds.

After this paper was written, E. Calabi informed us that he had known that
the Calabi construction was valid for Ricci-flat manifolds. He refered us to his
paper [6] where the kaehler case of our Theorem 4.1 is worked out in the
course of the argument of Theorem 1. There, T* is the Albanese variety of
M*, Calabi’s Jacobi map J: M™® — T* is both a holomorphic bundle and a
riemannian submersion, and the J-fibres correspond to our M™%,

1. Preliminaries

By “riemannian manifold” we mean a C~ hausdorft differentiable manifold
without boundary, together with a C* riemannian (positive definite) metric. If
M is a riemannian manifold and p > 0O an integer, then b,(M) denotes the p-th
Betti number for singular cohomology; it is the real dimension of the de Rham
group

{p-forms w: do = 0}/{dy: 7 is a (p — 1)-form} .

If M is compact, then the Hodge theorem says that the de Rham group is
isomorphic to the space #, = {p-forms w: 4w = 0} where 4 = dé + &d is
the Laplace-de Rham operator. If the riemannian manifold M is not orientable,
then o is defined by its local coordinate expression : 0wyt = —V *Diennip_s
(Einstein summation convention) for p > 0, and § annihilates functions. If M
is compact, then the Hodge theorem for M comes down from the two-sheeted
orientable riemannian covering manifold z: M — M as follows. Express M =
I'\M, where I = {1, y} and 7 is a fixed point free involutive isometry of M.
Let  be a p-form on M with dw = 0. Express z*w = A(z*w) + d2 where
h(z*w) is a harmonic p-form on M, and 1isa (p — 1)-form on M. Evidently
r*(z*0) = r*w, and also y*-h = h-7* because 7 is an isometry. Thus z*ep =
h(z*w) + dr*y where 5 is the (p — 1)-form on M defined by z*5 = (1 + y*)a.
Now w = h(w) + dy where A{w) is defined to be the p-form-on M with r*-lift
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h(r*w). Since h(z*w) is harmonic on M and the covering is locally isometric,
h(w) is a harmonic p-form on M. Uniqueness of A(z*w) in 7*w = h(z*w) +
dr*yn implies uniqueness of i(w) in w = hw + dy. Thus @ — A(w) defines an
isomorphism of the p-th de Rham group of M onto the space of harmonic p-
forms.

For a development of Hodge theory which does not use orientability, see
Nelson [13, § 71.

The Ricci tensor of M is denoted r. Let X be a nonzero tangent vector at
a point x € M. The Ricci curvature of X at x is defined to be r(X, x)/| X |
In local coordinates with the sign convention R;; = R™,,,., the Ricci curva-
ture is R, ; X*X7/g,;XXi. The mean curvature, i.e., the average of the sec-
tional curvatures for plane sections of M, which contain X, is (n — 1)~(X,
0/1XP.

We say that a vector field X is parallel if VX = 0. This means that if p,
g € M and ¢ is a curve from p to g, then parallel translation along ¢ carries
X, to X,. &, denotes the set of all parallel vector fields on M.

The Laplace-de Rham operator acts on vector fields through their corre-
spondence with 1-forms, and we let 2# = {X: 4X = 0}, the harmonic vector
fields on M. Also, we let I(M) be the isometry group of M, I(M)" its connect-
ed component of the identity, and .#(M) the Lie algebra of Killing vector fields
on M. We make extensive use of the following results of Bochner ([5]; see [22,
pp- 37 and 39] and [21]):

Theorem 1.1 (Bochner). Let M be a compact riemannian manifold. If X
is a harmonic vector field on M with r(X,X) > 0, then X is parallel and
HX,X) = 0. If X is a Killing vector field on M with r(X,X) <0, then X is
parallel and (X, X) = 0.

We will refer to these results as “the Bochner lemma”. Note that connected-
ness and orientability are dropped from the usual formulation. If M is non-
orientable, then the volume element dy formed from the riemannian structure
is a measure but not an n-form. However, for M compact, Green’s theorem

‘[ 6Xdy = O still holds. This is sufficient for the Bochner lemma to apply to
M

nonorientable M.

2. Nonnegative mean curvature

In this section we study compact riemannian manifolds M with every mean
curvature > 0, i.e., whose Ricci tensor r is positive semi-definite. We are able
to extract some consequences for the Betti numbers of such a manifold; for

2), k = b,(M) (Theorem 2.3).

We then use an idea of Berger to give a sufficient topological condition for such
a manifold to be flat (Theorem 2.4). In particular, this condition is satisfied

example, we give the lower bound b,(M) > (
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by a compact manifold which admits a flat riemannian structure.

In § 4 we shall give weaker sufficient topological conditions for M to be flat
under the stronger geometrical conditions » = 0. »

Theorem 2.1. Let M be a compact connected riemannian manifold, and
b,(M) its first Betti number.

If M has every mean curvature > 0, then &'y = 3, and &, is a central ideal
in the Lie algebra S (M) of all Killing vector fields on M. Further %, defines
a b,(M)-dimensional foliation of M by flat totally geodesic submanifolds.

If M has every mean curvature <0, then &'y = #(M) C 3, and the identity
component I(M)° of the isometry group is a torus group T of dimension
< b(M). T acts effectively and smoothly on M, and the orbits of the action
foliate M by flat totally geodesic tori of the same dimension as T.

Proof. Clearly &, C o and &', C #(M) for any riemannian manifold.

Suppose that M has mean curvature > 0. Then by the Bochner lemma,
H C %, so that 2, = # C F(M). Also, by Hodge’s theorem, dim & =
dim s = b,(M). '

If X is parallel and Z is a Killling vector field, then

X, Z]=VyZ = —V{X,Z>=0,

since the contraction of a harmonic vector field and a Killing vector field is a
constant {5], [22, p. 44]. Thus &, is a central ideal in #(M). In particular,
[Z), 2] = 0 so that 2, defines an involutive distribution of dimension b,(M).
Thus M is foliated by flat b,(M)-dimensional submanifolds. These submani-
folds are totally geodesic in M because integral curves of parallel vector fields
are geodesics.

If every mean curvature < O, then by the Bochner lemma, every Killing
vector field is parallel. Thus #(M) = &, C . Since %, is an abelian Lie
algebra, I(M)" is a torus group 7 of dimension < b,(M) = dim &##. q.e.d.

In case every mean curvature > 0, the Lie subalgebra £, of the center of
J (M) generates an abelian analytic subgroup of I(M)* whose closure is a cen-
tral torus subgroup of dimension > dim &', = b,(M). Thus the identity com-
ponent of the center of 7(M)" is a torus of dimension > b,(M). Also in this
case, & defines a smooth effective nonsingular action of the additive group
R* (k = b,(M)) on M, given by

kaM'_’M’ ((tl,"',tk),m)'_)Filo"'Ong(m)°

Here the {F}}, ;<. are the respective flows of & linearly independent parallel
vector fields. The orbits of this action are the leaves of the theorem.

We also remark that if (M) > 1 and M has every mean curvature > 0,
then M has a parallel and hence nonvanishing vector field. Hence the Euler-
Poincaré characteristic 3, = 0.
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In the case where M is Ricci-flat, we know I(M)° exactly.

Corollary 2.2. Let M be a compact connected riemannian manifold with
first Betti number b,(M). If M has every mean curvature = 0, then & = #
= SF(M)" and I(M)" is a b,-dimensional torus group.

Proof. Since r >0 and r <0, by the theorem &', = o C (M) and £, =
M) C #. q.ed.

The corollary generalizes the same result for compact flat manifolds. In the
flat case, however, I(M) can be explicitly described by the method of [19,
proof of Theorem 11].

If M has every mean curvature > 0, then we can extract some consequences
concerning the Betti numbers of M.

Theorem 2.3. Let M be a compact connected n-dimensional manifold with
every mean curvature > 0, and k = b,(M) its first Betti number. Then

by(M) > (’;) forp < k.

Also b,(M) < n, and b(M) = n if and only if M is a flat riemannian n-torus.
If b(M) = n — 1, then M is flat but not orientable.

Proof. Let {X;} ;< be k linearly independent parallel vector fields, and
let {#%},<;<; be the dual 1-forms, 64(Y) =Y, X,>. Now the {¢#’} are parallel and
thus harmonic, as are the

gl=02 N ..o Nbr, IT=(,- -0, 1<i< .- <i,<k.

Since these {#'} are (I;) linearly independent harmonic p-forms, by Hodge’s

k

theorem we have b,(M) > (p) for p < k.

Since ¥ = &, dim o = b,(M) < n. If b,(M) = n, then M has a parallel
frame. The curvature tensor vanishes in this frame, so M is flat. Since /(M)"
is an n-dimensional torus, so is M.

If (M) = n — 1, then we have n — 1 linearly independent parallel vector
fields {X;}1<i<n1 On M. If M were orientable, then this could be extended to
a frame {X,, - - -, X,_,, Z}, where Z is orthogonal to the » — 1 parallel vector
fields {X;};<:<»—: and normalized to unity, i.e., {Z, Z) = 1. Then for any vec-
tor field Y and X; parallel, V<{Z,Z> = 2{Z,VyZ> = 0, and V<{X;, Z> =
(X, VyZy = 0. Since {X;, Z},.;<,-1 is a frame at each point, V'yZ = 0 for all
Y so Z is parallel. Hence M has n linearly independent parallel vector fields
so that b,(M) = n, a contradiction. Now M is not orientable, and its 2-sheeted
orientable cover is a flat torus.

Remarks. 1. 1If b, (M) = [4n], then from Poincaré duality the theorem
gives a lower bound for all the Betti numbers of M.
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2. The example of the n-torus with b, = (Z) shows that our bounds are

the best possible (in terms of the first Betti number alone).

3. The conditions on the Betti numbers are necessary topological condi-
tions for a manifold to admit a riemannian structure with every mean curvature
> 0 and in particular to admit a flat riemannian structure; cf. also Cheeger-
Gromoll [8].

Let xu(t) = 337, b(M)t* be the Fuler-Poincaré polynomial of M.
Lichnerowicz [11] has shown that if every mean curvature > 0, then y;(?) is
divisible by (z 4 1)+,

4. Tt is interesting that for M orientable with every mean curvature > O
there is a gap in the possible values of the first Betti number. The example of
the Klein bottle with b, = 1 shows that orientability is necessary, and the dis-
joint union ' x $? U S§' X §? with b, = 2 shows that connectedness is neces-
sary.

5. Let span M be the maximal number of vector fields on M which are
linearly independent at each point, and let rank M be the maximal number of
commuting vector fields which are linearly independent at each point. From
Theorem 2.1, if M has every mean curvature > O, then M has b,(M) parallel
and hence commuting vector fields. Thus span M > rank M > b,(M). For M
orientable, span M > n — 1 = span M = n which is analogous to dim &, >
n — 1= dim £, = n. Since an orientable nontrivial 2-torus bundle over a
circle is a 3-manifold of rank 2 (a result of H. Rosenberg, R. Roussarie, and
D. Weil [14]) rank M does not have this property. Thus an orientable n-mani-
fold can have rank n — 1, and then given n — 1 commuting vector fields
linearly independent at each point there is no riemannian metric in which these
vector fields can be made parallel.

* Berger [2, § 8] and Berger-Ebin [3, § 8] show that a Ricci-flat variation of
a flat riemannian metric remains flat. We generalize this as follows.

Theorem 2.4, Let M be a compact connected n-dimensional manifold.
Suppose that M admits a finite topological covering r: M — M with bl(M )=n.
If g is a riemannian structure on M with every mean curvature > 0, then
(M , n¥g) is a flat riemannian torus and g is a flat riemannian metric on M.

Proof. Endow M with the differentiable manifold structure for which the
covering is differentiable. Let § = n*g be the pull-back of g. Then (M, g) and
(M, §) are locally isometric, so # has every mean curvature > 0. Since b, (M)
= n, (M, §) is a flat n-torus by Theorem 2.3, so g is flat.

Corollary 2.5. If a compact manifold M admits a flat riemannian structure,
then every riemannian structure with mean curvature > 0 on M is flat.

Proof. One of the Bieberbach theorems [4]; [20, Theorem 3.3.1] says that
each connected component of M is covered by a torus. q.e.d.

In particular, a compact manifold cannot have both flat riemannian metrics
and nonflat Ricci-flat riemannian metrics.
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3. Application to generalized nilmanifolds

Let G be a connected Lie group. Then its automorphism group Aut (G) is
a real linear algebraic group. The “affine group™ A(G) is the semidirect prod-
uct G- Aut (G), acting on G by (g, @) : x — g-a(x). Aut (G) has maximal com-
pact subgroups, and any two are conjugate. Choose a maximal compact sub-
group K C Aut (G). The “‘euclidean group” is the closed subgroup E(G) = G-K
in A(G).

If G is the n-dimensional real vector group R", then Aut (G) = GL(n, R),
the general linear group, and its maximal compact subgroup is just the orthog-
onal group O(n). Then A(G) is the usual affine group, 4(n) = R*-GL(n, R),
and E(G) is the usual euclidean group E(n) = R™-0(n).

A differentiable manifold M is called a generalized nilmanifold if it is dif-
feomorphic to a quotient /"\N, where N is a connected simply connected nil-
potent Lie group and I” is a discrete subgroup of E(N). Then I' acts freely
(because I'\N is a manifold) and properly discontinuously on N. M is a nil-
manifold if in addition I" C N C E(N). See [19, § 6] for a discussion. Here we
sharpen [19, Theorem 6.4] as follows.

Theorem 3.1. Let M be a compact connected riemannian manifold with
every mean curvature > 0. Suppose that the underlying differentiable manifold
of M is homotopy-equivalent to a compact generalized nilmanifold. Then M
is flat, i.e., M is isometric to a compact euclidean space form. Further, the
following conditions are equivalent: (i) M is a nilmanifold ; (i) =, (M) is nil-
potent;, (iii) M is a flat riemannian torus.

Proof. Let N be a connected simply connected Lie group, and I” C E(N)
a discrete subgroup such that there is a homotopy equivalence f: M — I'\N.
According to L. Auslander ([1]; or see [19, Proposition 6.2]) there is an exact
sequence 1 - X > — ¥ — 1, where 3 = ' N N is a maximal nilpotent
subgroup of I and ¥ is finite. Now f lifts to a homotopy equivalence f: M’ —
X\N where M’ is a finite riemannian covering manifold of M. From the proof
of [19, Theorem 6.4], M’ is diffeomorphic to a torus. Thus b,(M’) = n where
n = dim M’ = dim M. Corollary 2.2 above says that M’ is a flat riemannian
torus. In particular M is flat.

Observe that I is nilpotent exactly when it coincides with 3 = " 1 N be-
cause the latter is a maximal nilpotent subgroup. If M is a nilmanifold then
I’ = =, (M) is nilpotent. If [" is nilpotent then M = M’, a flat riemannian torus.
If M is a flat riemannian torus then it is a nilmanifold Z*\R™.

In particular, since euclidean space forms are generalized nilmanifolds, we
have

Corollary 3.2. Let M be a compact connected riemannian manifold with
every mean curvature > 0. If M is homotopy-equivalent to a compact euclidean
space form, then M is flat.
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4. The Calabi construction for Ricci-flat manifolds

We now specialize to manifolds with every mean curvature zero, i.e., whose
Ricci tensor r = 0. We extend Calabi’s result on the structure of compact
euclidean space forms from flat manifolds to Ricci-flat manifolds. As a conse-
quence, one of the Bieberbach theorems can also be generalized to the Ricci-
flat case.

Our extension of the Calabi construction specifies the Ricci-flat n-manifolds
in terms of the Ricci-flat manifolds of dimension < n and the Ricci-flat n-
manifolds with b, = 0. Similarly our extension of the Bieberbach theorem re-
duces the question of existence of nonflat Ricci-flat manifolds to the case of
simply connected manifolds.

-Using these results we give various sufficient topological conditions for
Ricci-flat riemannian manifolds to be flat (Corollaries 4.3, 4.4 ; Theorem 4.6).

Part of our argument in generalizing the Calabi construction to the Ricci-
flat case is the standard Selberg discontinuity technique [16, p. 149]. Yau uses
that technique to obtain a weaker result [23, Theorem 3] under the weaker
hypothesis that M have every mean curvature > O.

Theorem 4.1. Let M® be a compact connected Ricci-flat (r = Q)
riemannian n-manifold and. k = b,(M™). Then there is a finite normal
riemannian covering

p: Tk X Mn—k ___>Mn — w‘\(Tk X Mn—k)

where

(1) T*is a flat riemannian k-torus,

2) ¥ = {(hp), ¢): ¢ € D}, where @ is a finite group of isometries of M"~*
and h is ar infective homomorphism of @ into the translation group of T* (so
¥ acts freely and properly discontinuously on T* x M™™%),

(3) Mn* s a compact connected Ricci-flat riemannian (n — k)-manifold
which has no nonzero @-invariant parallel vector fields.

Conversely, given T*, M*~*, and ¥ as above,

M? = U\(T* X M»%)

is a compact connected Ricci-flat riemannian n-manifold with first Betti number
k, and M™® is determined up to affine equivalence by (M"~*, @, k).

Proof. From Theorem 2.1, the identity component of the isometry group
I(M)" is the torus group T*. Let x: M" — M" = I'\M" be the universal
riemannian covering. I” is a discrete subgroup of the isometry group I(M™).
The torus group I(M")° lifts to a real vector group R* of ordinary translations
along the euclidean factor in the de Rham decomposition of M*. Thus M =
Ef* X M »=% where E* is a euclidean k-space and the R*-orbits are the E* X
{m}, m e M~~*. This product splitting is stable under I" because R* centralizes
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I'. Since I(M™)® = R*/R* N I" and is compact, R* N I is a lattice in R* which
is central in I'. If y e I then y = (1, 7.), where 7, € I(E*) and 7, € I(M"~*)
because the product structure E* X M™~* is [-invariant. Define I"; = {y;:
rell,sol' CI'y X I',. Since R* N I is a lattice in R* and is central in I, 1,
is an ordinary translation on E*. Now [; is abelian, and its derived (com-
mutator) groupis [I", '] = 1 x [I",, I',]. The quotient I'/[I", '] = H(M™";.Z)
is the product of a finite abelian group with a finitely generated abelian group
of Z-rank k. Since Z* = (R* N I") < (I"; X 1), we have

4=R NI X[IyT]

is a normal subgroup of finite index in I". In particular R* N I" has finite index
in I'; X 1, and [, I",] has finite index in ;.

Define A ={yel:y,=1}andB={yel:y,=1}. Then A =R* N T
because I, consists of translations of E*. Evidently (1 x [I",, I, )CBC (1 x I,).
Now

Y=AXB=R*'NI) XB
is a normal subgroup of finite index in I". Define
T = (R* N \E*, M~ *=B\M*~*, ¥ =T/3.

Then T* is a flat riemannian k-torus, M™~* is a compact connected Ricci-flat
riemanniann (n — k)-manifold, and the projection

p: T* X M™% > U\(T* X M%) =T"'\M" =M

is a finite normal riemannian covering.

Let ¢ ¥, say ¥ = y4B. Then + acts on T* by a translation ¢ = 4. If
¥ is trivial in 7% = A\FE*, then we replace y by an element of y4 and can
assume 7, = 1. Consequently y € B, so ¥ = 1. Similarly if + is trivial on
Mm%, then 4 = 1. Thus ¥ = {(A(p), ©) : ¢ € @}, where @ is a finite subgroup
of I(M™~*) and % is an injective homomorphism of @ to the translation group
of T*.

If M™—* has a nonzero @-invariant parallel vector field, then that field in-
duces a parallel vector field ¥ on M*. The lift of ¥ to ™ must be tangent to
E*, contradicting the provenance of Y. Thus M*~* has no nonzero @-invariant
parallel vector fields.

Given T*, M2~ * and ¥ as in the statement of the theorem, it is obvious that
M* = U\(T* X M"~*) has the required properties.

Fix M* %, @ and k as in the statement of the theorem. Let A; be injective
homomorphisms of @ to the translation group of T*. Define ¥;={(/:(¢), 0):
¢ € @}. Since the A, are injective and @ is finite, there is an automorphism «
of the translation group of T* such that 4, = «-h;,. Now a X 1: T* X M"*
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— T* x M** induces an affine equivalence of ¥ ,\(T* X M""*) onto
TN\(T* x M*%). q.e.d.

Roughly speaking, Theorem 4.1 says that modulo identifications from a
finite group of isometries, it is possible to split off a flat k-dimensional torus
k = b,(M) from a Ricci-flat riemannian manifold. This simplifies the topology
and reduces the dimension of the spaces on which we study Ricci-flat metrics.
To be precise, Theorem 4.1 reduces the affine classification of compact n-
dimensional Ricci-flat manifolds to

(i) the classification in dimensions < n,

(ii) the classifications in dimension n with b, = 0, and

(iii) the classification of finite abelian groups @ of isometries of compact
Ricci-flat manifolds M»~*, 0 < k < n, such that M™% has no nonzero @-in-
variant parallel vector field.

Iterating Theorem 4.1 we obtain the following.

Corollary 4.2. Let M™ be a compact connected Ricci-flat riemannian n-
manifold. Then there is a series of finite normal riemannian coverings

2 Mnr—&r _, Tkr-1 % M'n—kf_x_) e TR X M M

where b(M™) = k, < -.. < k,, each M~ % js a compact connected Ricci-flat
riemannian (n — k,)-manifold, each T* is a flat riemannian ki -torus,
b(M* ¥y =k, , — k; for 1 <i<r, and b(M* %) = 0.

As another corollary, we obtain the following result of Willmore [18] which
generalizes the classical result that Ricci-flat riemannian manifolds of dimen-
sion < 3 are flat.

Corollary 4.3. Let M™ be a compact connected Ricci-flat riemannian n-
manifold. If b(M™) > n — 3, then M"™ is flat.

Proof. Applying Theorem 4.1, M™% is a Ricci-flat riemannian manifold
of dimension < 3, so from [12] it is flat. Hence M is flat. q.e'.d.

Lichnerowicz [12, p. 219] and Yau [23, Corollary 1] prove Corollary 4.3 in
the case n = 4.

Using the same technique as in Theorem 2.4, we can derive a weaker suf-
ficient condition for Ricci-flat manifolds to be flat.

Corollary 4.4. Let M be a compact connected n-dimensional manifold. Sup-
pose that M has a finite topological covering r: M — M with b](M) >n—3.
Then every Ricci-flat riemannian structure on M is flat.

Note that this weakening of the topological condition on M compared to
Theorem 2.4 is a consequence of our strengthening the geometrical condition
on M. .

According to Cheeger and Gromoll [8, Theorem 3], x,(M) has a finite nor-
mal subgroup P such that there is an exact sequence 1 — Z* — 7,(M)/P —
(finite) — 1. If we replace M by a finite covering we increase b, but evidently
do not increase k. Doing that we may suppose =,(M)/P = Z* with k = b,(M),
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and Theorem 4.1 then gives us T* X M*~* — M with x,(M"~*) finite. If N is
the universal riemannian covering of M”~*, then we have

Theorem 4.5. Let M be a compact connected Ricci-flat riemannian mani-
fold. Then there is a flat riemannian torus T of dimension > b, (M), a compact
simply connected Ricci-flat riemannian manifold N, and a finite riemannian
covering T X N — M.

This extends the Bieberbach theorem ([14]; see [20, Theorem 3.3.1]) which
says that a compact euclidean space form admits a finite normal riemannian
covering by a flat torus. This extension can also be extracted from the work
of Cheeger-Gromoll [8], specifically from the proof of Theorem 6.

Remarks. 1. If (M) is infinite, then dim T > b,(M) > 0 s0 3 = 0.

2. If M is flat, then Theorem 4.5 specializes to the Bieberbach theorem;
N, being compact connected simply connected and flat, reduces to a point. If
M is not flat, then dim N > 4.

3. If every compact simply connected Ricci-flat manifold is flat, then the
theorem shows that every compact Ricci-flat manifold is flat.

Using this extension of the Bieberbach Theorem, we can find some inter-
esting sufficient topological conditions for Ricci-flat manifolds to be flat.

Theorem 4.6. Let M be a compact connected Ricci-flat n-dimensional
riemannian manifold. Then the following are equivalent :

1. Mis flat.

2. For k > 1 the homotopy groups =, (M) = 0.

3. The universal covering of M is acyclic.

Proof. (1)=> (3) and (2). If M is flat, its universal covering p: £* - M
is a euclidean r-space which is contractible and hence acyclic. Also, 7 (E*) =0
for all k > 1, so (M) = 0 for k > 1 by the isomorphism p, : 7 (E") —
7.(M) for k > 1.

Not (1) = Not (3) and Not (2). Suppose M is not flat. Then from Theorem
4.5, the universal covering of M is p: E X N — M, where E is a euclidean
space and N is compact simply connected and of dimension r > 4. Then H,(N)
= H,(E X N) is infinite cyclic, so the universal covering cannot be acyclic.

Now let s be the smallest positive integer such that H(N) # 0, s < dim N.
Since N is simply connected, s > 2, and by the Hurewicz isomorphism theorem
7. (N) = 0 for s < s and =n(N) = H(N) = 0. Thus 7z, (M) = n(E X N) =
z(N) = 0. q.e.d.

Finally we comment that none of our results exclude the possibility that the
Kummer surface [17], which is a compact simply connected 4-manifold with
b, = 22 and y = 24, might carry a nonflat Ricci-flat riemannian metric.
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